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CONSERVATION INNOVATION GRANTS 

Final Report 

Introduction 
Agricultural drainage is necessary for crop production on about 25% of cropland in the United 

States.  Improved drainage increases crop yields, but also increases nitrogen (N) loads that can 

have negative environmental impacts on waters receiving drainage outflows. Drainage Water 

Management (DWM), also referred to as controlled drainage or managed drainage, is a practice 

that can reduce N loads while maintaining or improving crop yields. It involves the use of 

drainage water control structures that are installed at drainage outlets to regulate drainage 

intensity and outflow according to farming needs. It works by reducing drainage outflow and 

promoting denitrification reaction to transform dissolved nitrate into dinitrogen gases. Effective 

management of the structures reduces the amount of water drained and the amount of N lost from 

the field. The costs of control structures and the time required to effectively manage the 

structures has limited the acceptance of DWM among growers. An incentive  program based on 

nitrogen trading where farmers could get financial compensation for the effective operation of 

the drainage water control structure and reducing N loads will likely increase acceptance of 

DWM and protect the quality of receiving waters. A nitrogen trading program involving DWM 

will require a simple and accurate tool to calculate the amount of N loss reductions resulting 

from DWM. This tool will need to consider the many variables affecting N loading from a 

drained crop field. Also, the input data to this tool must be readily available and verifiable. 

Objectives 
The objectives of this CIG were to develop and assess a simple tool for quantifying the impacts 

of DWM on the reduction of drainage flow and N losses from subsurface drained cropland. This 

tool can be used with an N trading program involving DWM to estimate the annual N reductions 

resulted from implementing the practice to a specific farm.  
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Approach 
The proposed design of the tool is a set of simple regression equations that can calculate annual 

reductions in drainage flow and associated N losses for a specific farm as a function of 

explanatory variables describing essential farm characteristics. The data set used to build the 

regression equations is generated by thousands of DRAINMOD and DRAINMOD-NII model 

simulations over representative ranges of soils, climatic conditions, drainage designs, and 

cropping practices typical for the region of interest. Two separate studies have been conducted: 

a) Eastern North Carolina; and b) U. S. Midwest. The Midwest includes many states spanning 

over several climate zones.  The states that were chosen for the current analysis were Minnesota, 

Iowa, and Illinois due to their intensive agricultural presence, their need for water table 

management, and their spanning of all Midwestern climate zones. 

Methods 

Development of the Regression Equations 

The following steps were followed to develop the regressions equations for the DWM tools for 

the four states. 

1) Select locations that represent high crop intensity, different climate zones, and soil types. 

2) Obtain climate data from National Climatic Data Center of the National Oceanic and 

Atmospheric Administration (NCDC-NOAA). Thirty years of historical data where obtained. 

3) Obtain soil data from the Cooperative Soil Survey (MCSS, 2015) and convert to 

DRAINMOD format with using ROSETTA model (Schaap et al., 2001). Soil series were 

selected by indicators of poor drainage and crop appropriateness:  

a) slope <1%; 

b) depth of soil profile >1 m; 

c) seasonal water table depth <18 inch,  

d) a “poorly drained” soil classification by MCSS (2015).  

4) Use DRAINMOD and DRAINMOD-N II simulations to determine annual drainage volume 

and annual N load for all combinations of 

 Midwest North Carolina 

Location (Climate data for 

location) 

19 counties 4 counties 

Soil Series more than 120 more than 30 

Drain spacings between 9 and 35 m Between 15 and 55 m 

Drain depths between 70 and 145 cm between 80 and 150 cm 

Fertilizer applications between 70 to 170 kg N/ha between 70 and 260 kg N/ha 

Surface storage (surface 

drainage) 

1.5 cm, 2.5 cm, 4 cm 0.5 cm, 1.0 cm, 2.0 cm 

  

Simulated scenarios of cropping system and drainage water management include: 

Class 1- Continuous Corn under Controlled Drainage;  

Class 2- Continuous Corn under Free Drainage;  

Class 3- Corn-soybean (Midwest) or Corn-wheat-soybean (NC) rotation under Controlled 

Drainage;  

Class 4- Corn-soybean (Midwest) or Corn-wheat-soybean (NC) rotation under Free 

Drainage. 
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5) Build regression equation for each scenario using the data sets generated by the 

DRAINMOD and DRAINMOD-N II simulations. SAS (PROC GLMSELECT) 

a) 𝑌𝑑 =  𝛽1𝑋1 +  𝛽2𝑋2 +⋯+  𝛽𝑛𝑋𝑛 + 𝛽𝐶1𝑋𝐶1 is the generic equation 

i) The βs represent coefficients estimated by SAS and the Xs represent variables and 

their interactions to be used in the given scenario 

 

Figure 1. Locations of counties used in the Midwest analyses shown with visual representation of 

climate divisions: NRCS DATA GATEWAY, 2014 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Locations of counties used in the North Carolina analyses shown with visual 

representation of climate divisions: NRCS DATA GATEWAY, 2014 
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Figure 3. Cropland suitable for drainage water management in the U.S. Midwest. *GIS data sources: 

http://datagateway.nrcs.usda.gov.*Cropland county-based tabulated data  : http://www.nrcs.usda.gov/ 

 

The explanatory variables (the inputs) required for the regression equations are listed in the 

following table. 

Explanatory  variables for regression equations predicting 

Annual Drainage Annual Nitrogen Loads 

Drain spacing (cm) Annual drainage either predicted by 

DRAINMOD or by the drainage regression 

equation 

Drain depth (cm) Annual relative crop yield (%)  

Annual rainfall (cm) Previous year’s relative crop yield (%) 

Soil texture (% Sand, % Silt, % Clay) Fertilizer application rate (Kg N/ha) 

Soil Organic Carbon Content (%) Annual rainfall 

Surface storage (Level 1, Level 2, Level 3) Previous year’s rainfall 

 Soil Organic Carbon Content (%) 

 Ratio of rainfall in growing season to annual 

rainfall (Midwest only) 

 

Testing of the Regression Equations 

The developed regression equations were tested by comparing their predictions to the predictions 

of DRAINMOD and DRAINMOD-N II model simulations. A detailed description of the 

approach used for testing the regression equations is given in the manuscript attached to this 

report. 

 

http://datagateway.nrcs.usda.gov/
http://datagateway.nrcs.usda.gov/
http://www.nrcs.usda.gov/
http://www.nrcs.usda.gov/
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Results and Deliverables 
A)  Development and Testing of the DRAINMOD-Based Tools: 

 

1. The outcome of this project is a DRAINMOD-based tool for estimate the impact of drainage water 

management (DWM) on artificially drained crop lands located in the U.S. Midwest and Eastern North 

Carolina.  

2. The tool comprises a set of regression equations estimating the performance of DWM in terms of reducing 

drainage flow and NO3-N losses without the need for using processes based models such as DRAINMOD 

and DRAINMOD-NII. The regression equations estimate the annual drainage and N loading for four 

scenarios combining two cropping systems (continuous corn and corn-soybean for US Midwest or corn-

wheat-soybean for North Carolina) and two drainage system management: (conventional drainage and 

controlled drainage).  

3. All regression models were developed using the GLMSelect procedure (PROC GLMSELECT) of SAS 

software (V 9.3, SAS Institute, Cary, NC). This procedure is suitable for models combining both 

continuous and categorical predictors (More details about the regression analysis and data manipulation are 

given in the attached manuscript).  

4. All regression models require easy-to-obtain parameters that describe local site conditions, including: 

weather, soil type, drainage system, nutrient management, and crop yields. To use the developed tool, one 

must select the regression equation that represent the scenario and provide the required input data that 

represent the local farm conditions.  

5. The regression model estimations of annual drainage flow and NO3-N losses were highly correlated with 

DRAINMOD simulated values (Figure 4). For the Midwest, adjusted R-squared values were greater than 

0.90 for flow and 0.82 for NO3-N. For NC, adjusted R-squared values were greater than 0.91 for flow and 

0.88 for NO3-N. 

6. The developed regression models were compared on a year-by-year basis to the calibrated DRAINMOD 

and DRAINMOD-NII models for local conditions of an experimental site in eastern NC over 25 years. A 

similar comparison was conducted for the U.S. Midwest region. The results indicated that the simple 

regression method provides an adequate alternative to the processes based DRAINMOD suite of models for 

estimating annual reductions in drainage rates and N mass losses resulting from implementation of DWM. 

The comparisons between the estimates of the regression models and the predictions of the process based 

models for a North Carolina farm are presented in the attached manuscript. 

7. However, precautions should be considered when using the regression models to estimate DWM 

performance under extreme weather conditions (very dry or very wet). Under these extreme conditions, the 

estimates of the regression models tend to considerably deviate from DRAINMOD/DRAINMOD-NII 

predictions. 

8. A Master student and a post-doctoral associate worked on the project. The student is currently writing his 

thesis and is expected to complete all degree requirements by the end of Fall 2015.  
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Figure 4. Example output of diagnostic plots comparing DRAINMOD simulation values to the 

regression predicted values.  (PROC REG, SAS procedure). 

 

 

B)  An Online Calculator for the Developed Tools: 

An online calculator was designed to help producers and planners to easily apply the tool by simply inserting 

easy to define parameters describing local site conditions. Screen shots of the online calculator is presented 

below. This online calculator is primitive and requires significant improvement before it can be readily applied. 

More funds will be needed to further develop the online interface of the tool. 
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C)  Publication and Presentations: 

 Negm, L., Youssef, M., Skaggs, R., and Chescheir, G. DRAINMOD-based tools for 

assessing the impact of drainage water management (DWM) on annual drainage flow and 

Nitrate losses from cultivated drained soils in Eastern North Carolina. Submitted for The 

Journal of Agricultural Water Management. 

 Negm, L.M., M.A. Youssef, R.W. Skaggs, and G.M. Chescheir, R. O. Evans. 2014. DRAINMOD-based 

tools for nitrogen credit trading systems involving drainage water management. Presented at ASABE 

Annual International Meeting, Montreal, Quebec, Canada, July 14-16, 2014. 

 Brooks, F.N., L.M. Negm, M.A. Youssef, G.M. Chescheir, and R.W. Skaggs. 2015. Development, 

evaluation, and demonstration of simple tools for nitrogen credit trading system involving drainage water 

management. Poster Presentation, 2015 Conservation Innovation Grants Showcase, Greensboro, North 

Carolina, July 27, 2015. 

 

Program (EQIP) and CIG grant agreement provisions:  

1. A listing of EQIP-eligible producers involved in the project, identified by name and social security number 

or taxpayer identification number; None.  
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2. The dollar amount of any direct or indirect payment made to each individual producer or entity for any 

structural, vegetative, or management practices. Both biannual and cumulative payment amounts must be 

submitted. $0.0  

3. A self-certification statement indicating that each individual or entity receiving a direct or indirect payment 

for any structural, vegetative, or management practice through this grant is in compliance with the adjusted 

gross income (AGI) and highly-erodible lands and wetlands conservation (HEL/WC) compliance provisions 

of the Farm Bill. Not applicable. 
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 6 

Abstract  7 

Nitrogen (N) lechate of drained agriculture has continued to be pervasive in the nation’s water resources. 8 

Nitrogen credit exchange program is a trading market to facilitate pollutant reductions and protect the environment. 9 

A simple tool suitable for eastern North Carolina (NC) was developed to quantify drainage flow and N mass 10 

reductions resulting from drainage water management (DWM); an efficient and common conservation practice for 11 

drained agricultural lands. The tool comprises a set of regression equations estimating the performance of DWM as 12 

a function of local site conditions. DRAINMOD and DRAINMOD-NII simulations were conducted for a wide range 13 

of soil types, weather conditions, and management practices for different locations in eastern North Carolina. 14 

Simulation results were used with SAS 9.3 software to  develop a set of regression equations to estimate DWM-15 

caused reductions in annual drainage flow and corresponding NO3-N losses for continuous corn (CC) and corn-16 

wheat-soybean (CWS) cropping systems. The regression model estimations of annual drainage flow were highly 17 

correlated with DRAINMOD simulated values with an adjusted coefficient of multiple determination (R2
adj) equaled 18 

to 0.91 or higher for different management tiers. Similarly, the regression model estimations of annual nitrate losses 19 

achieved an R2
adj of 0.88 or higher for all management tiers. The developed regression models were further 20 

compared on a year-by-year basis to the calibrated DRAINMOD and DRAINMOD-NII for local conditions of an 21 

experimental site in eastern NC over 25 years. Estimated annual drainage flow and NO3-N losses were in good 22 

agreement with corresponding values simulated by DRAINMOD-based models for CC and CWS under managed 23 

and unmanaged drainage modes. In terms of DWM-induced annual reductions in drainage flow and N losses, 24 

noticeable differences occurred in several years between predictions of DRAINMOD-NII and the regression models. 25 

A comparison based on the 5-year moving average of DWM-induced reductions smoothed out the extreme year-to-26 

year variations and indicated a very similar reduction trends provided by both methods. The results presented in this 27 

case study indicated that the simple regression method provides an adequate alternative to the processes based 28 

DRAINMOD suite of models for estimating annual reductions in drainage rates and N mass losses resulting from 29 

implementation of DWM. Similar tools can be developed for other regions in the US and abroad credit trading 30 

system involving DWM. 31 

 32 

Keywords: DRAINMOD, DRAINMOD-NII, regression analysis, agricultural drainage, nitrogen trading, 33 
controlled drainage. 34 

 35 

mailto:Lmnegm@ncsu.edu
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1. Introduction 36 

Nitrogen (N) lechate from drained agricultural lands is a pervasive problem to the nation’s water resources. The 37 

excess of N fertilizer applied on corn fields of the US Midwest have been identified as the main contributor to 38 

seasonal hypoxia in the northern Gulf of Mexico, the nation’s largest and most productive fishery (Petrolia and 39 

Gowda, 2006; Mitsch et al., 2001; Dinnes et al. 2002, Alexander et al., 2008). In the Atlantic coastal plain, excessive 40 

levels of nutrients originated from drained agricultural fields have been identified as being a primary cause of 41 

eutrophication in the lower Neuse River basin, Pamlico River estuary, and other waters in eastern North Carolina. 42 

“The minimization of these N losses is desirable from an environmental standpoint, and a recent interest in 43 

discounted reductions of agricultural N losses that might apply to a project downstream from an agricultural area has 44 

resulted in the concept of N credits and associated N trading.” (Delgado et al., 2008). 45 

Controlled drainage (CD), also referred to as drainage water management (DWM), is a practice for reducing NO3-N 46 

losses via drainage water (Skaggs et al., 1994; Evans et al., 1995; Drury et al, 1996; Wesström et al., 2001; Zebarth 47 

et al., 2009). Unlike conventional or free drainage (FD) characterized by open drain outlets throughout the year; 48 

DWM employs a drainage water control structure at drain outlets to regulate drain flow according to the need for 49 

drainage for field operations and crop growth. Previous field experiments that have conducted side-by-side 50 

comparisons between managed and unmanaged drainage systems, documented reductions in annual drain flow and 51 

N drainage loss resulting from DWM by 20% to 60%  (Evans et al., 1995; Pitts et al., 2004; Fausey, 2005; Ayars et 52 

al., 2006; Zebarth et al., 2009; Poole et al., 2013, Fang et al., 2012). Managed systems conserve more groundwater 53 

and nutrients for plant uptake, especially during relatively dry growing seasons. Ghane et al. (2012) reported that the 54 

DWM provided up to 3.3% greater yield compared to FD. A North Carolina study by Poole et al. (2013) indicated 55 

that DWM achieved a 10% yield benefit for corn and soybean compared to FD. Drainage water management 56 

however, had no significant effect on winter wheat yields due to the wet and cold environment although it is the 57 

period when water quality benefits are mostly achieved. Therefore, in many locations where DWM can be 58 

effectively applied to improve water quality, the relatively modest yield benefits of the practice are not sufficient to 59 

increase nationwide adoption of the practice.  60 
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Water quality credit trading markets have recently been proposed in the U.S. offering an innovative approach to 61 

achieve water quality objectives by controlling pollutant discharge from multiple sources; point and non-point (US 62 

Environmental Protection Agency (USEPA), 2007). Through these markets, farmers or stakeholders get monetary 63 

compensation based on their application of conservation practices that reduce N losses.  Such an approach would be 64 

exceptionally effective in promoting the large scale adoption and use of DWM for substantial environmental 65 

benefits, as well as, bringing economic and social advantages to farmers and other stakeholders (Corrales et al.; 66 

2013 and 2014). One of the largest water quality trading initiatives in the United States is The Great Miami River 67 

Watershed Trading Program in Ohio. This program aims to accelerate reductions of phosphorus and nitrogen runoff 68 

coming from fields receiving fertilizer and manure applications (Newburn and Woodward, 2012). According to 69 

2014 trading program fact sheet released by Miami Conservancy District (MCD), more than 1.14 million credits 70 

have been generated since the start of the project in early 2005.  This is reported to translate to a 572 ton reduction in 71 

nutrients discharge at a cost of 1.6 million dollars  paid to agricultural producers for these credits. 72 

An essential component of any water quality credit trading system involving DWM is a tool or a method for 73 

determining annual N mass conserved by implementing DWM for  a specific site and farm conditions (weather, soil, 74 

drainage system, cropping system, and farming practices). Several computer simulation models have been 75 

developed to predict nutrient losses from agricultural fields as affected by environmental conditions and 76 

management practices. Over the past two decades, the DRAINMOD suite of models have been the models of choice 77 

for simulating the hydrology and water quality in drained agricultural lands and have been extensively tested and 78 

applied nationwide (e.g. Skaggs, 1982; Fouss et al., 1987; Workman and Skaggs, 1989; Cox et al., 1994; Wang et 79 

al., 2006a; Ale et al., 2009; Youssef et al., 2006; David et al., 2009; Thorp et al., 2009; Luo et al., 2010; Ale et al., 80 

2012). However, the use of such process-based models requires detailed input data and modeling experience which 81 

limit their applicability for this purpose on a production scale.   Developing simple decision support tools based on 82 

process-based models that can be used by farmers and policy makers for the purpose of nutrient credit trading 83 

markets has been well introduced (Delgado et al., 2008; Gross et al., 2008; Corrales et al., 2014; Saleh et al., 2011).  84 

Skaggs et al. (2012a) demonstrated the potential of DRAINMOD-based models to formulate trading tools necessary 85 

to assess the environmental benefits of installing DWM. Their proposed tool to estimate the effect of DWM on N 86 

losses was presented by a simple linear function of annual subsurface drainage and long-term average flow weighted 87 
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nitrogen concentration. However, the tool oversight temporal and spatial variations in environmental condition and 88 

management design which by its turn constrain the tool application to selected configuration of local site conditions. 89 

Further research and analysis, utilizing DRAINMOD-based models, can broaden the application of such tools; not 90 

only with water quality trading markets, but also with different water resources management studies and 91 

applications. For example, this tool can be extremely useful for management of watersheds dominated with drained 92 

agriculture. 93 

2. Purpose and Scope: 94 

The purpose of this project is to develop and evaluate a simple tool for quantifying the impacts of DWM on the 95 

reduction of drainage flow and NO3-N losses from subsurface drained cropland in eastern North Carolina. This is 96 

the region where DWM was initiated in the mid 1980’s for the purpose of reducing nutrient losses. This tool would 97 

be essential for any water quality credit trading system that involves the use of DWM. A similar approach will be 98 

used to develop tools for crop production systems on drained lands in the U.S. Midwest. 99 

Three essential features should be considered in developing this tool: 1) accuracy, 2) simplicity, and 3) data 100 

availability. Accuracy is at the core of any water quality credit trading system.   Estimates of the credits that all 101 

stakeholders can accept is a challenge for the non-point source component(s) of the system. Simplicity is essential 102 

since the easy use of the tool will promote its adoption. Data availability is also important since the inputs to the tool 103 

must be easy to obtain, standardize, and interpret. The conceptual design of the tool is a set of simple regression 104 

equations that can assess annual reductions in drainage flow and associated NO3-N losses for the region of interest 105 

as a function of explanatory variables describing essential farm characteristics. 106 

A representative dataset is required to build the proposed regression model and it should comprise a number of 107 

observations that consider the inclusion of critical explanatory variables, the temporal and/or spatial variations in 108 

each variable, and the response (dependent) variables under investigation (i.e., drainage flow and NO3-N losses). It 109 

is practically impossible, however, to conduct a large enough number of field experiments to quantify DWM 110 

performance in response to the wide variation in soil, environmental conditions, and management practices for a 111 

given region. Instead, the DRAINMOD suite of models was used to simulate drainage flows and N leaching losses 112 
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for the wide range of climate year, soil type, drainage design, and farming practices of the  NC Coastal plain for 113 

both managed (DWM) and unmanaged (conventional drainage) scenarios.  114 

 115 

3. Materials and methods 116 

3.1 Description of Study Area 117 

The North Carolina Coastal plain encompasses the easternmost counties of the state on a total area of 22,500 square 118 

miles that lies between 33° 52ʹ and 36° 33ʹ north latitudes and between 75° and 78 30° west longitudes (Figure 1). 119 

This region is characterized by low relief topography becoming more flat and swampy with a larger percentage of 120 

the farms artificially drained towards the Atlantic coastal shoreline (Figure 2). The Coastal Plain is the major area 121 

for agricultural crop production in the state. The most commonly grown crops in the area are corn, soybean, wheat, 122 

and cotton. Installing drainage systems is a common practice by farmers to improve field trafficability and to 123 

increase yields and profitability. On average, 40% of the agricultural fields in the area are artificially drained 124 

(Pavelis, 1987; Jaynes and James, 2007). Summer temperatures are moderate with daytime high temperatures 125 

averaged at 32 °C (90 °F), while winter temperatures are generally mild with 13.4 °C (56.2 °F)  average daytime 126 

temperatures in the month of January; the coldest month of the season (State Climate office of North Carolina, 127 

2013). The annual precipitation in eastern North Carolina averages at 130 cm (51 inches); mostly in the form of 128 

rainfall with no distinct dry or wet seasons within a year. Although NC coastal plain is classified as a humid-129 

subtropical climate division, sever dry conditions occasionally occur resulting in substantial losses in the crop yields. 130 

 131 

 132 

 133 

 134 
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 135 

Figure 1. Map of North Carolina Coastal Plain and Climate Divisions of the Region. (GIS data source: 136 
http://datagateway.nrcs.usda.gov/) 137 

 138 

 139 

Figure 2. A map illustrating the distribution of poorly drained soils in North Carolina. (GIS data source: 140 
http://datagateway.nrcs.usda.gov/) 141 

 142 

http://datagateway.nrcs.usda.gov/
http://datagateway.nrcs.usda.gov/
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3.2 DRAINMOD-based Models description: 143 

DRAINMOD (Skaggs, 1978) is a field-scale hydrologic model developed to simulate the hydrology of poorly 144 

drained high water table soils. It conducts a one-dimensional soil water balance   and  predicts subsurface drainage, 145 

surface runoff, infiltration, deep seepage, water table depth, and evapotranspiration as affected by changes in 146 

weather conditions, crop cover, soil type, and drainage system design. The model applies the Green-Ampt equation 147 

to estimate infiltration rates.  Subsurface drainage is calculated using Hooghoudt’s equation provided that water 148 

table is below the surface, otherwise DRAINMOD uses Kirkham’s equations when the surface is ponded.  Surface 149 

runoff is calculated when a user-defined depressional storage is filled as the difference between precipitation and 150 

infiltration rates.  Daily potential ET (PET) may be internally computed by the model using the Thornthwaite 151 

method with monthly correction factors, or daily PET values may be determined independently  outside the model 152 

by any method (depending on  weather data availability) and  read in by the model as input data. The model has 153 

been widely used to study the effects of drainage design and management on crop yields (e.g. Evans et al., 1991; 154 

Wang et al., 2006a; Throp et al., 2009), erosion (e.g. Saleh, 1994), hydrology of high water table soils (e.g. Fouss et 155 

al., 1987; Skaggs et al., 1981; Wang et al., 2006a; Throp et al., 2009; Luo et al., 2010), and wetland hydrology (e.g. 156 

Skaggs et al., 2005; Jia and Luo, 2006).   157 

DRAINMOD-NII (Youssef et al., 2005); a companion model to DRAINMOD, is a process-based model that 158 

simulates Carbon (C) and N dynamics of drained cropland.  DRAINMOD-NII simulates a detailed N cycle that 159 

considers both mineral N (nitrate and ammoniacal forms) and organic N (ON) and their interaction as affected by C 160 

cycling. The organic carbon (OC) dynamics is simulated using a C-cycle adapted from the CENTURY model 161 

(Parton et al., 1993) by which the soil organic matter is divided into three pools (active, slow, and passive), two 162 

above-and below-ground residue pools (metabolic and structural), and a surface microbial pool. The model performs 163 

a numerical solution of the multiphase form of the one dimensional advection–dispersion-reaction equation using 164 

the finite difference method to simulate N reactive transport in the soil column among three soil N pools: nitrate 165 

(NO3)-N, ammoniacal (NH3/4)-N, and organic nitrogen (ON). Nitrogen processes simulated by the model include 166 

atmospheric deposition, plant uptake, N fixation by legumes, mineralization/immobilization, nitrification, 167 

denitrification, ammonia volatilization, and N losses via subsurface drainage, vertical seepage and surface runoff. 168 

The model has been tested against field measurements and found to reliably predict N losses in drainage water for a 169 
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range of soils and locations across the U.S. (North Carolina: Youssef et al., 2006; Iowa: Thorp et al., 2009; Illinois: 170 

David et al., 2009; Minnesota: Luo et al., 2010; Indiana: Ale et al., 2012).  DRAINMOD-NII has also been tested in 171 

Europe (Germany: Bechtold et al., 2007 and Sweden: Salazar et al., 2009). 172 

3.3 Data Collection: 173 

This section describes data collection and processing required to conduct DRAINMOD and DRAINMOD-NII 174 

simulations of the hydrology and nitrogen dynamics for a wide range of possible scenarios of local site conditions. 175 

DRAINMOD and DRAINMOD-NII simulations of annual drainage flow and annual N losses, respectively, were 176 

used to extrapolate the results of field experiments to build the regression model since it is practically impossible to 177 

conduct large enough number of experiments. 178 

3.3.1 Weather Data  179 

Historical weather data including hourly precipitations and daily maximum and minimum temperatures were 180 

obtained from the North Carolina State Climate Office for different spatially distributed locations across the Coastal 181 

Plain. These data covered up to 50 year time span of weather records. A simple analysis using a paired T-test 182 

showed that annual rainfall patterns measured for stations within the same climate region were not significantly 183 

different (Pr ≥ 0.16). Therefore, and in order to avoid weather related factors  overwhelming  the influence of other 184 

factors, weather station selections was limited to a few  stations at different locations within the North (climate 185 

region 8), Middle (climate region 7), and South (climate region 6) of the coastal plain (Figure 1). These weather 186 

satiations coinciding with four counties; namely from north to south: Washington, Pitt, Duplin, and Pender counties.  187 

Rainfall and temperature data were the only climatic data required since Potential evapotranspiration (PET) was 188 

computed by the model using the temperature-based Thornthwaite method, with monthly correction factors. All 189 

required input weather parameters were then processed to conform to the required DRAINMOD formatting. 190 

3.3.2 Soil Data 191 

The boundary of each of the counties listed above was considered as a buffer zone of the weather station each 192 

encompasses; and the soils within each buffer zone and suitable for installing DWM systems were identified through 193 

the National Cooperative Soil Survey (MCSS, 2010) and considered in the current analysis as distinct farm units. 194 
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This selection criterion granted the inclusion of more than 30 different soil series that collectively occupies at least 195 

50% of the cropped land suitable for DWM in eastern North Carolina. For many of the selected soil series, soil 196 

water characteristics data (soil water content versus pressure head) were available based on previous laboratory 197 

measurements on soil cores using standard pressure plate methods. When measured soil water characteristics were 198 

not available, soil physical properties were obtained from SSURGO soil data base (MCSS, 2010) and utilized in the 199 

ROSETTA model (Schaap et al., 2001) to estimate van Genuchten water retention and unsaturated hydraulic 200 

conductivity parameters. Estimated soil water characteristics were further processed using DRAINMOD 6.1 soil 201 

utility program to estimate detailed soil related parameters including the volume drained and upward-flux 202 

relationships and Green and Ampt infiltration parameters, all as a function of water table depth. Other 203 

biogeochemical parameters required to simulate soil carbon and nitrogen dynamics were obtained from previous 204 

DRAINMOD-NII applications for NC conditions (Youssef et al, 2006). Organic soils were excluded from this 205 

analysis.   206 

3.3.3Crop management and drainage design:  207 

Two crop rotations were considered in the current study: continuous corn (CC) and corn-winter wheat-soybean 208 

rotation (CWS). Crop planting and harvesting dates (Table 1) were defined according to usual operational dates 209 

stated by the USDA National Agricultural Statistics Service (NASS) (USDA, 2010). Fertilizer management was set 210 

based on recommended practices documented by the Agronomic Division of the North Carolina Department of 211 

Agriculture & Consumer Services (NCDA&CS). We considered the reported varying rates of fertilizer application 212 

to address all possible levels considered within the region. Fertilized crops; corn and wheat, received 30% of the 213 

total amount at planting as a starter, with the remainder sidedressed at the recommended time after planting (Table 214 

1).   215 

Similarly, drainage system design parameters included in the simulations were set according to common practices in 216 

the region to represent realistic conditions for the proposed water management scenarios. Drain depth and spacing 217 

were allowed to vary within a range of values listed in the Field Drainage Guide for Coastal Plain Area of North 218 

Carolina (NC USDA SCS, 1976). Recommended drain spacings  varied between 15 to 50 m placed at depths 219 

ranging from  90 to 150 cm. Surface drainage was considered at three different levels: good (depressional storage 220 
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(DS) ≤ 0.75 cm), fair (0.75 cm < DS ≤ 1.5 cm), and poor (DS ≥ 1.5 cm). Weir settings that define the control 221 

structure depths under the DWM scenario were adjusted based on the recommendations of the NC Agricultural Cost 222 

Share Program (ACSP).  223 

Table 1: Summary of crop and fertilization management inputs for continuous corn and corn-wheat-soybean 224 
rotation at Eastern North Carolina 225 

Cropping System Crop Planting  Harvest  Fertilizer application 

  Date Date DAP1  Kg N/ha 

Continuous Corn Corn 15 - April 10 - September 0  40 - 66 

    30  90 - 154 

       

Corn-wheat-soybean Corn 15 - April 10 - September 0  40 - 66 

    30  90 - 154 

 Wheat 10 - November 15 - June 0  27 - 51 

    100  63 - 119 

 Soybean 19 - June 10 - November NA2  NA 
1 DAP= days after planting. 226 

2 NA = not applicable 227 

 228 

3.4  Set-up of hydrologic and water quality simulations: 229 

DRAINMOD and DRAINMOD-NII simulations were conducted to predict annual drainage flow and associated 230 

nitrogen losses for a wide range of environmental factors and management practices within each geographic region 231 

considered.  More than ten thousands of simulations were conducted.   Input data at the county level were organized 232 

in ASCII-formatted files that list benchmark soils and related soil input files, common drain depths and spacing, as 233 

well as, range variations in fertilization rate. DRAINMOD and DRAINMOD-NII models were integrated through a 234 

batch mode that allows for: 1) updating the models input files for different subsets of scenarios each representing a 235 

unique combination of soil type, drainage design, and fertilizer rate, 2) executing DRAINMOD model to simulate 236 

the hydrology and DRAINMOD-NII to continuously simulate nitrogen dynamics for both managed (DWM) and 237 

unmanaged (conventional drainage) conditions  for 20 to 50 years of available historical weather data and for each 238 

proposed scenario, and 3) exporting simulation output to databases that comprise records of simulated annual 239 

drainage flow and N losses (response variables) along with controlling input parameters (explanatory variables) 240 
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required to build the regression models. The identification of input variables that simulated drainage flow and nitrate 241 

losses are sensitive to, was based on previous experimental work and modeling studies (Kladivko et al, 2004 and 242 

2005; Youssef et al., 2006; Negm et al., 2014; Skaggs et al., 2005, 2013). 243 

The output databases were screened to identify inconsistencies, then merged and organized under two main 244 

categories: Database 1 comprised a total of 80,000 records for building a regression model to estimate drainage flow 245 

and, Database 2 comprised of more than 200,000 records to estimate N-losses. Database 2 included a greater number 246 

of records due to the inclusion of additional parameters that have significant impact on N-losses (e.g.: fertilization 247 

rate) while having no impact on predicted drainage flow. Note that estimated relative yield (predicted crop yield/ 248 

potential yield) predicted by DRAINMOD was considered among the explanatory factors affecting N-leaching 249 

losses since it is used by DRAINMOD-NII to simulate N-plant uptake.  250 

3.5 General Linear Regression (GLR) Analysis: 251 

General linear regression (GLR) is an approach by which a response (dependent) variable is related to multiple 252 

explanatory (predictor) variables through a linear relationship. However, building a regression model that comprises 253 

a relatively large number of predictor variables and based on large number of records is challenging and requires 254 

advanced computational techniques. At this phase of the project, we conducted statistical analysis through the SAS 255 

9.3 (SAS Institute, Cary NC); a high performance computing software capable of handling large databases and 256 

performing robust regression analyses.  257 

We chose the GlmSelect procedure “PROC GLMSELECT” to build the proposed regression model since it supports 258 

features that are not supported by other regression procedures implemented in SAS software. GlmSelect procedure 259 

supports the “Class” statement that is required to distinguish categorical variables from continues variables. 260 

Dissimilar to other generalized linear modeling procedures (e.g.: PROC GLM), the GlmSelect includes multiple 261 

effect selection methods: forward, backward, stepwise, Least Angle Regression (LAR) (Efron et al., 2004), and 262 

Least Absolute Shrinkage and Selection Operator (LASSO) regression (Tibshirani, 1996 and 2011). It allows the 263 

modeler to specify different degrees of interaction among different variables. Another option that the GlmSelect 264 

procedure supports, utilized herein, is the data partitioning statement that allows for subdividing the input datasets 265 

into: a) training data used to build the regression model, b) validation data based on which the predicted error for the 266 
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model is estimated to avoid regression over-fitting, and c) testing data that played no role in model building and 267 

could be used solely to assess the model predictive power. A typical partition fraction assigns 50% for the training 268 

data set and 25% each for validation and testing data sets.  This procedure was followed in the current study. 269 

The regression analysis was initiated by including all candidate explanatory variables (Table 2) that affect a 270 

particular constituent (i.e.; annual drainage flow and N losses). Explanatory variables that could be strongly 271 

influenced by one or more other explanatory variables were identified through using scatter plots and correlation 272 

statistics [p-values and Pearson correlation coefficient (r)].  These variables were excluded from the model to avoid 273 

multi-collinearity. 274 

The criteria for determining best model from a set of potential models based on the adjusted coefficient of multiple 275 

determination (Radj
2).  Radj

2 differs from the commonly used coefficient of determination; R2, which typically 276 

increases as the number of explanatory variables in the regression model increases.   Radj
2 compares models that 277 

have different numbers of explanatory variables by penalizing models that have additional coefficients (Helsel and 278 

Hirsch, 1995) and thereby provides a stronger indicator of the strength of the model. 279 

Although the GlmSelect regression, particularly the “Stepwise” selection method, evaluates the contribution of each 280 

variable added to or removed from a model, an explanatory variable statistical significance could be exaggerated due 281 

to the inclusion of huge number of records used to build the model. Therefore, and through an iterative processes, 282 

variables that were identified as significant; i.e., assigned a high t-static, but had no substantial impact on reducing 283 

the root mean squared error (RMSE), or on increasing R2
adj were excluded from the analysis. Since the GlmSelect 284 

procedure does not support regression diagnostics, the developed models were further investigated by assessing the 285 

relation between simulated values predicted by DRAINMOD-based models with their correspondence estimated by 286 

the regression models using a simple linear regression; i.e., PROC REG.  Residuals plots and Cook’s distance 287 

(Cook’s D) statistic were used to determine outliers or highly influential records. 288 

 289 

 290 
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Table 2. Candidate explanatory variables for the proposed regression models. 291 

1 Descriptive statics for numerical variables only. 292 
2 Different levels for categorical variables only. 293 
3 Used within a corn-wheat-soybean crop management scenario. 294 

Category Explanatory variable Symbol Numerical Categorical Descriptive statics 1 Variable Levels 2 

    
 

    minimum maximum mean level 1 level 2 level 3 

Climate Annual precipitation, cm Rain ●   100 160 129.6    

Soil Silt content , % Silt ●   5.2 32 

 

18       

 Clay content, % Clay ●   5 43 20    

 Sand content, % Sand ●   25 87 62    

 Organic Carbon, % OC ●   0.4 6 1.3    

  Saturated hydraulic conductivity, cm/hr Ksat ●               

Sub-surface drainage Drain depth, cm D-depth ●   80 150 115       

  Drain spacing, m Spacing ●   15 55 30       

Surface drainage Surface drainage conditions S-Storage   ●       good fair poor 

Crop management & yields crop relative yield, % Yield ●   40 100 85       

 crop cover 3 Crop   ●      Crn-Wh Wh-Sb −− 

  Fertilizer applied, Kg N/ha/yr Fert ●   70 260 150       

Preceding year conditions  Climate L-rain   ●       dry normal wet 

  crop production  L-Yield   ●       high medium low 
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4. Results and Discussion 295 

The final product of the current study is a set of regression equations or models designed to estimate annual drainage 296 

flow and corresponding annual NO3-N losses under four tiers of management scenarios: Tier 1: A continuous corn 297 

cropping system operated under conventional drainage (FDCC), Tier 2: A continuous corn cropping system 298 

operated under controlled drainage or drainage water management (DWMCC), Tier 3: A corn-wheat-soybean 299 

cropping system operated under conventional drainage (FDCWS), and Tier 4: A corn-wheat-soybean cropping 300 

system operated under controlled drainage (DWMCWS).  301 

In this section, we report the different regression models, the corresponding fit statistics, and an assessment of their 302 

predictive power using the data withheld for model testing. Also, we present an example application that compares 303 

the predictions of the regression model to DRAINMOD predictions for a specific site conditions. It should be noted 304 

that the regression  models were built allowing first degree interaction among different explanatory variables. 305 

Allowing a higher degree of interaction did increase model complexity with no additional performance 306 

improvements.  307 

4.1 Regression models for  annual drainage flow prediction 308 

The selected form of the GLM models developed to estimate annual drainage flow included six numerical variables 309 

and two categorical variables. The numerical variables included sand, silt, and clay contents, annual rainfall, and 310 

drain depth and spacing. The categorical variables are the surface drainage condition and  crop cover in a corn-311 

wheat-soybean rotation tiers.  Although DRAINMOD predictions of drainage flow have been found to be sensitive 312 

to changes in the soil lateral saturated hydraulic conductivity (Ksat) (Hann and Skaggs, 2003; Wang et al., 2006b), 313 

the values of Ksat were found to be highly correlated with soil texture parameters; sand (r = 0.67), silt (r = -0.49), and 314 

clay (r = -0.63). This finding is expected as numerous studies have shown the dependency of Ksat on soil texture (e.g. 315 

Saxton et al., 1986; Tietje and Hennings, 1996; Rawls et al., 1998; Kosugi, 1999). Therefore, Ksat were not included 316 

in the regression models. Predicted annual drainage flow was not significantly affected by parameters related to crop 317 

management, yields, as well as, parameters describing preceding climatic conditions. Annual precipitation was the 318 

most significant parameter controlling the variation in drainage flow with an r = 0.52. These results showing the 319 
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sensitivity of drainage flow to different explanatory variables agreed with previous experimental findings (Youssef 320 

et al., 2006; Kladivko et al, 2005; Wang et al., 2006a; Jaynes and Colvin, 2006).  321 

A preliminary assessment of the regression models’ performance showed that their estimation of annual drainage 322 

flows in either extreme dry or extreme wet years were associated with very high residuals and Cook’s D values. As a 323 

result, records with the most extreme 5% of the rainfall distribution (Rain < 99 cm or Rain > 160 cm) were 324 

eliminated from all data subsets and the regression process was repeated. Therefore, the regression equations may 325 

not provide accurate estimates of the annual drainage flow if to be applied on years with extremely high or low 326 

annual precipitation.  327 

The response variable YH; annual drainage flow (cm), can be estimated from the following equation: 328 

                 YH   =  β1 X1   +  β2 X2  +  β3 X3 + …… + βn Xn +   329 

                            βL1 XL1 +   βL2 XL2 + …………..+ βLm XLm                 (Eq. 1) 330 

where m and n are the number of equation terms without and with a categorical variable, respectively. βi is the 331 

regression coefficient corresponds to ith equation term (X) representing a numerical variable or an interaction 332 

between two numerical variables for i = 1, 2, 3,….n. βLj is the regression coefficient corresponds to jth equation term 333 

(XL) representing a categorical variable, or an interaction between a categorical and numerical variable, or an 334 

interaction between two categorical variables.  335 

All the equation terms and corresponding parameter estimates for different management tiers are listed in Table S1 336 

and Table S2. In most cases the selected explanatory variables can be easily defined with no need for intensive or 337 

expensive field measurements.  This was the goal of the study, to develop a simple tool that can be used with easily 338 

accessible data.    339 

The four tiers’ regression models developed to estimate annual drainage flow achieved an R2
adj higher than 0.88, and 340 

a root mean squared error (RMSE) less than 10.5 cm (Table S1 and Table S2). These numbers indicate a high 341 

correlation between simulated and estimated annual drainage flow which is mainly attributed to simultaneously 342 

assessing the effects of various explanatory variables on the response variable through the utilization of the 343 

GlmSelect procedure and through a factorial design structure of the modeled data (Pedhazur, 1997). The factorial 344 
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design considers a multi-dimensional space that combines all possible combinations of several factors, each with 345 

several numerical or categorical levels. However, caution must be used in applying the models for years with 346 

extremely low or high annual rainfall. 347 

The different terms of the developed equations (Table S1 and S2) emphasized that joint effects between parameters 348 

generally govern the variation in the response variable (YH) more than what the main effect of each explanatory 349 

variable.  This could be attributed to the strong inherent interaction among different environmental and management 350 

design variables in their contribution to controlling the system performance. 351 

Figures 3  illustrates comparison between DRAINMOD simulated annual drainage flow and their corresponding 352 

estimated by the four-tiers regression models utilizing the dataset withheld for model testing. Both simulated and 353 

estimated annual drainage values were highly correlated with a Radj
2 equals to 0.93, 0.92, 0.94, and 0.91 for tier 1, 354 

tier 2, tier 3, and tier 4 regression models, respectively. These values are as good as those estimated for the training 355 

dataset indicating an unbiased regression model. The random distribution of the residual in the diagnostic residual 356 

plots, as well as the proximity of the quantile plots to straight lines (Figure 3) indicate that regression model 357 

assumptions including residuals normality and homoscedasticity (equal variance) were preserved.  358 

 359 

 360 

 361 
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 367 

 368 

 369 
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Figure 3. Correlation between simulated and estimated annual drainage flow (cm/year), scatter residual plots, 378 
and residual-quantile plots using the data withheld for model testing for a) FDCC, b) DWMCC, c) FDCWS, 379 
and d) DWMCWS management scenarios.380 
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4.2 Regression models for predicting annual NO3-N losses 381 

The strategy used to develop regression models for estimating annual NO3-N losses was similar to that described in 382 

Section 4.1 for drainage outflows.  We started building the model by implementing all categorical and numerical 383 

variables that showed significant effect on estimating annual drainage flows and then added parameters related to 384 

crop management. However, the large number of explanatory variables caused the resulting models to be very 385 

complicated. Several modeling and experimental studies documented that rates of NO3-N leaching losses are highly 386 

correlated with rates of drainage flow (Kladivko et al., 2004; Youssef et al., 2006; Ale et al., 2009; Luo et al., 2010; 387 

Skaggs et al., 2012a; Negm et al., 2014).  Thus, predicted annual drainage flow was used as an explanatory variable 388 

to estimate annual NO3-N loss to simplify the equation.  Using a simple correlation statement; i.e. PROC CORR, 389 

annual drainage flow rate was the most correlated parameter with annual nitrate losses (r > 0.5).  390 

The final regression models to estimate annual NO3-N losses included four numerical variables and two categorical 391 

variables. The numerical variables included annual drainage flow, soil organic carbon, relative yield, and fertilizer 392 

application rate. Selected categorical variables included preceding year crop production level and climate conditions, 393 

in addition to crop cover in corn-wheat-soybean rotation settings.  394 

The response variable YN; annual NO3-N losses (Kg N ha-1), can be estimated from the regression model (Equation 395 

1) where all the equation terms and corresponding parameter estimates for different management tiers are listed in 396 

Table S3 and Table S4. Annual drainage flow may be estimated as described in section 4.1. An alternative is to run 397 

DRAINMOD model directly to compute annual drainage flow for a local site conditions of interest. Although this 398 

alternative is expected to yield more accurate estimation of drainage flow, it does require modelling experience and 399 

data availability.  400 

The developed regression models for estimating annual NO3-N losses resulted in an adjusted R2 of 0.88 or higher for 401 

all management tiers indicating high correlation between DRAINMOD-NII simulated and estimated annual NO3-N 402 

losses. Incidences at which the estimated annual drainage losses were poorly correlated with DRAINMOD-NII 403 

simulated values (high value of the residual) were scattered between the upper and lower bounds of the response 404 

variable. Such differences could be attributed to DRAINMOD models capability of simulating dynamic 405 

environmental conditions and their interaction with management practices. The regression models are not capable of 406 
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considering such interactions. For example, the intensity of rainfall events and their timing relative to the growing 407 

season and fertilizer application dates in a given year affect N concentration in drainage waters, and, in turn, annual 408 

N load. Rainfall at a different intensity and date with respect to fertilization may result in a very different annual N 409 

loss, even though the annual rainfall and fertilization are similar.   410 

Figure 4 illustrates the diagnostic plots for assessing the ability of the regression models to estimate annual N loads 411 

in comparison to DRAINMOD-NII simulated values for the four tiers of management scenarios. The achieved R2
adj 412 

equaled to 0.9, 0.88, 0.92, and 0.92 for tier 1, tier 2, tier 3, and tier 4 regression models, respectively. This indicates 413 

consistently good performance of the developed regression equations in estimating N drainage losses under both 414 

conventional and controlled drainage. This performance was achieved despite lumping a large number of interacting 415 

complex hydrological and biogeochemical processes. This simple model provides a calculation tool for estimating  416 

the effect of implementing DWM on N loads at the field outlet. 417 
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 438 

Figure 4. Correlation between simulated and estimated annual drainage flow (cm/year), scatter residual plots, and 439 
residual-quantile plots using the data withheld for model testing for a) FDCC, b) DWMCC, c) FDCWS, and d) 440 
DWMCWS management scenarios. 441 
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4.3 Case Study: 443 

In the this section, the regression models’ estimation of drainage flow and NO3-N leaching losses were compared, on a 444 

year by year basis, to the predictions of DRAINMOD and DRAINMOD-NII, calibrated for a drainage water management 445 

site located at the Tidewater Research Station (TRS) near the town of Plymouth, in the North Carolina lower coastal plain 446 

(Skaggs et al., 2012b, Youssef et al., 2006). Throughout this example application, we refer to drainage flow and NO3-N 447 

losses predicted by DRAINMOD and DRAINMOD-NII as “simulated”, while the values calculated by the regression 448 

models are referred to as “estimated”.    449 

4.3.1 Description of the Agricultural System 450 
The soil on the nearly flat, 13.8-ha site is Portsmouth sandy loam, which is very poorly drained under natural conditions. 451 

The surface soil horizon characterized by a relatively high organic carbon (3.5%). The subsurface drain pipes were spaced 452 

at 23 m and placed at 118 cm below the soil surface. The site is planted to a corn-wheat-soybean rotation; however, a 453 

continuous corn scenario has also been proposed for complete demonstration and comparison purposes. A 25-year period 454 

(1976-2000) of measured weather data (daily temperatures and precipitation records) was utilized for this example 455 

application. Table 3 summarizes variables that describe site characteristics required by the regression models. Detailed 456 

description of DRAINMOD and DRAINMOD-NII parameterization is described by Youssef et al. (2006) and Skaggs et al. 457 

(2012b). 458 

Table 3.  Summary of soil property and site parameter inputs for the TRS site. 459 
 460 

 461 
 462 

 463 

 464 

 465 

 466 

 467 

 468 

 469 

 470 

Variable Value 

Drain depth, m 1.18 

Drain spacing, m 23.0 

Depressional Storage, cm1 1.25 

Sand content, % 75.5 

Silt content, % 14.0 

Clay content, % 10.5 

OC,  % 3.5 

Fertilization, Kg N ha -1  

Corn 175 

Wheat 120 

Soybean NA 
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1 The 1.25 cm of depressional storage is equivalent to Level 2 of surface storage in the regression equation. 471 
2 In a corn-wheat-soybean rotation, annual applied fertilizer for a CW year depended on the total amount of fertilizer applied for 472 
corn plus the starter amount applied for wheat, and for a WS year, the annual fertilizer applied equaled to the sidedressed 473 
application for wheat. 474 

4.3.2 Annual Drainage Flow 475 

Annual drainage flow simulated by DRAINMOD and estimated by the regression models are visually compared in Figure 476 

5. For the FDCC and DWMCC, the Percent Difference (PD) between estimated and simulated annual drainage flow was 477 

within ±15% in over 56% of the years, and within ±25% in over 82% of the years. Over the 25-year period, the PD 478 

between estimated and simulated average annual drainage flow was -2.3% for the FDCC (estimated = 39.8 ± 12.7 cm, 479 

simulated = 40.8 ± 13.5 cm), and PD was 1.6% for the DWMCC (estimated = 32.2 ± 12.6 cm, simulated = 31.7 ± 10.6 cm). 480 

Years when estimated drainage substantially differs from simulated values were mostly associated with years experienced 481 

extreme climate conditions; years with extreme annual precipitation and/or years that has monthly precipitation patterns 482 

that sharply deviated from long-term means. For example, in the extreme dry year of 1993 (annual precipitation = 100 cm) 483 

estimated annual drainage was 42% and 47% less than their corresponding values simulated by DRAINMOD for the 484 

FDCC and DWMCC, respectively. In 1999 when annual perception were similar to long-term averages, estimated and 485 

simulated annual drainage flows respectively were 42.6 and 34.3 cm (PD = +24%) for the FDCC, and were 35 and 26.9 cm 486 

(PD = +30%) for the DWMCC. These differences could be mainly attributed to the significant divergence of seasonal 487 

rainfall from normal conditions. The period of February till August 1999 which received 56.5 cm of rainfall and reported 488 

as the third driest period in a 49-year record, was followed by a series of hurricanes and tropical storms with a total of  55.5 489 

cm of rainfall during September and October 1999.  This was the wettest period in a 49-year historical weather record 490 

(1951 -1999) (Shelby et al., 2006). Under such conditions, DRAINMOD simulated near zero drainage in the prolonged dry 491 

period followed with   large drainage volumes associated with excessive surface runoff in the short but extremely wet 492 

period. However, estimated drainage values by the regression model were close to long term estimated drainage values 493 

since it is based on annual rainfall amounts and does not consider the seasonal extremes.   494 

For the FDCWS and DWMCWS, PD between estimated and simulated annual drainage flow was within ±15% in over 495 

52% of the years, and within ±25% in over 76% of the years. Estimated and simulated average annual drainage over the 496 

case study period were 40.8 and 38.5 cm for the FDCWS (PD = 5.1%); 34.1 and 31.3 for the DWMCWS (PD = 9.1%). 497 

Similar to the continuous corn management scenarios, seasonal distribution of rainfall events was a critical factor 498 

impacting the difference between estimated and simulated annual drainage flow in some of the years. For 1999, estimated 499 
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annual drainage flow were 36% and 19% higher than the simulated values respectively for FDCWS and DWMCWS. 500 

Under the extreme dry conditions of 1993, estimated annual drainage flow were 27.7% and 30.7% lower than the simulated 501 

values for the FDCWS and DWMCWS, respectively. Another exceptionally dry year was 1997, which was similar to 1993 502 

in terms of annual rainfall and crop cover (corn-wheat). The regression model estimated similar annual drainage flows for 503 

the two years. DRAINMOD simulated lower drainage flow in 1997 than in 1993. In 1997, around 50% of annual rainfall 504 

occurred during the hot growing season when evapotranspiration demands normally exceed drainage rates.  In contrast 505 

70% of the annual rainfall in 1993 occurred during the fallow period resulting in greater drainage volumes.  Such 506 

differences cannot be predicted by the simple regression equations.  Yet, overall, they do a very acceptable job in 507 

predicting annual outflows. 508 

A fair correlation between estimated and simulated percent reduction in annual drainage due to DWM can be inferred from 509 

the year-by-year comparison illustrated in Figure 6 for CC and CWS. The 5-year moving average curves reduced the 510 

effects of temporal variations and identified no over- or under-estimation trends predicted by the regression models, in 511 

comparison to annual flow reductions predicted by DRAINMOD.  512 

Overall, the simple regression models showed comparable performance to DRAINMOD in estimating annual drainage 513 

flow under different management and climate scenarios. They provide a simple, reliable method of estimating annual 514 

drainage flow, which can be used to estimate annual NO3-N losses as described in the following section. These equations 515 

may also be useful in other   water conservation and environmental management applications where estimates of annual 516 

drainage outflows are needed.  517 
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Figure 5. Annual drainage flow as simulated by DRAINMOD (DRN) and estimated by the regression models (REG)for 

different management tiers. (Values between parentheses represent average annual drainage flow ± standard deviation, 

all units are in cm).  

 



 

 

 526 

 527 

Figure 6. Reduction in annual drainage flow (%) due to DWM as simulated by DRAINMOD (DRN) and estimated 528 
by the regression models (REG) for continuous corn (CC) and corm-wheat-soybean (CWS) management tiers. Solid 529 
line represents the 5-year moving average of reduction in annual drainage flow (%) as estimated by the regression 530 
model (REG: 5-Yr Avg), and the dashed line represents the 5-year moving average of reduction in annual drainage 531 
flow (%) as simulated by the DRAINMOD (DRN: 5-Yr Avg). 532 
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4.3.3 Annual Nitrate Losses 542 

Utilizing the estimated annual drainage flow discussed in section 4.3.2; annual NO3-N losses were estimated for the 543 

same management tiers considered in this example application. Figure 7 presents the annual NO3-N losses estimated 544 

by the regression models as compared to corresponding values simulated by DRAINMOD-NII for the FDCC, 545 

DWMCC, FDCWS, and DWMCWS. The Percent Difference (PD) between estimated and simulated annual N losses 546 

was within ±25% over 76%, 72%, 76%, and 56% of the 25 years for FDCC, DWMCC, FDCWS, and DWMCWS, 547 

respectively. 548 

 Larger PD’s occurred in some years for both rotations and drainage modes. As an example, in years 1982, 1983, 549 

and 1989; estimated losses were noticeably lower than simulated values for the FDCC and DWMCC (Figure 7).  550 

This could be mainly attributed to the timing of heavy rainfall events that coincided or shortly followed site 551 

fertilization causing DRAINMOD-NII to simulate high N losses early in the growing season. In addition, estimated 552 

drainage flows were lower than simulated values for 1982 and 1983. In the exceptional wet year of 1989 (annual 553 

precipitation = 176 cm) heavy rainfall events coincided with or closely followed days when fertilizer was applied.  554 

DRAINMOD-NII simulated excessive NO3-N losses (30 Kg N/ha for FDCC and 23 Kg N/ha for DWMCC) during 555 

the very wet month of March as nutrient residues turned over the preceding dry year of 1988 (annual precipitation = 556 

103 cm). For the CWS scenarios, estimated and simulated annual NO3-N losses for 1989 were in close agreement. In 557 

this year (1989), the field was planted to corn following soybean, which received no fertilization in 1988.  558 

Therefore, nutrient residuals carried over to 1989 was not as significant as in a CC scenario. Again, the timing of 559 

rainfall events relative to nutrient management, growing season and crop cover dramatically affects DRAINMOD-560 

NII simulations. The regression models do not consider such factors, resulting in the discrepancies in N losses, and 561 

the effect of DWM on N losses predicted by the two approaches.    562 

Average annual NO3-N losses over the 25 years estimated by the regression models agreed well with DRAINMOD-563 

NII predictions for the FDCC (estimated = 48.8 ± 8.5 Kg N/ha; simulated = 49.8 ± 18.5 Kg N/ha), and for the 564 

DWMCC (estimated = 42.5 ± 10.4 Kg N/ha; simulated = 41.2 ± 14.4 Kg N/ha). Similarly, estimated average annual 565 

NO3-N losses were in close agreement with simulated values for the FDCWS (estimated = 58.0 ± 13.0 Kg N/ha; 566 

simulated = 56.5 ± 21.8 Kg N/ha), and for the DWMCWS (estimated = 45.9 ± 16.0 Kg N/ha; simulated = 46.7 ± 567 

18.2 Kg N/ha).  The fact that the regression approach predicted results similar to the long-term annual averages 568 

predicted by DRAINMOD-NII is expected since a regression model usually performs better as an estimator of 569 

normal conditions, than for other conditions that occur less frequently. 570 



 

 

The potential application of these regression models in N trading markets was the main motive for developing the 571 

current regression model as a tool to estimate DWM-induced reductions in N losses. Figure 8 illustrates annual 572 

reductions due to DWM for CC and CWS scenarios as predicted by the regression approach versus DRAINMOD-573 

NII simulations. Average annual reduction in NO3-N losses due to DWM as estimated by the regression model for 574 

the CC scenario was 6.3 Kg N/ha versus 8.6 Kg N/ha predicted by DRAINMOD-NII. For the CWS, estimated 575 

annual reductions averaged at 6.6 Kg N/ha versus a simulated value of 7.2 Kg N/ha. 576 

 On a year-by-year basis, estimated reductions did not agree well with DRAINMOD-NII predictions in many of the 577 

years (Figure 8). For CC, noticeable difference between estimated and simulated reductions was in years with 578 

extreme dry growing seasons (i.e.; 1981, 1986, and 1997) associated with low crop yields. For the normal-to-wet 579 

years followed these dry years (i.e.; 1982, 1987, and 1998), the regression model tends to estimate lower N losses 580 

reductions compared to that simulated by DRAINMOD-NII. Estimated reductions in 1979 and 1995 didn’t agree 581 

with simulated values. These years  experienced very wet growing seasons causing significant crop yield reductions 582 

(as simulated by DRAINMOD), especially under the controlled drainage mode that caused additional loss to crop 583 

yields due to increased wet stresses. For the CWS, discrepancies between estimation of DWM-caused reductions are 584 

noticeable in several years.  This was especially the case in the first 6 years of simulation when the regression model 585 

estimation of annual NO3-N losses didn’t agree well with DRAINMOD-NII simulated values under the controlled 586 

drainage mode. 587 

There was less variability when the comparison is based on the 5-year moving average of the predicted annual 588 

reductions of NO3-N losses (Figure 8), as overestimation in some years was counterbalanced by underestimation in 589 

other years within the 5-year period. For CC the effect of DWM on the 5-year moving average of N losses as 590 

estimated by the regression equations was within 0.0 to 3.0 Kg N/ha of that predicted by DRAINMOD NII.  For the 591 

CWS cropping system the absolute differences ranged between 0.0 to 9.0 Kg N/ha, and between 0.0 to 3.0 Kg N/ha 592 

if the first 5 years of simulation were excluded from the analysis. 593 



 

 

 594 

 595 

596 

 597 

Figure 7. Annual NO3-N losses as simulated by DRAINMOD (DRN) and estimated by the regression models 598 
(REG) for the different management tiers. (Values between parentheses represent average annual drainage 599 
flow ± standard deviation, all units are in Kg N/ha).  600 
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 602 

 603 

Figure 8. DWM-caused reductions in annual N03-N losses (Kg N ha-1) as simulated by DRAINMOD (DRN) 604 
and estimated by the regression models (REG) for continuous corn (CC) and corm-wheat-soybean (CWS) 605 
management tiers. Solid line represents the 5-year moving average of reduction in annual N-losses (Kg N ha-1) 606 
as estimated by the regression model (REG: 5-Yr Avg), and the dashed line represents the 5-year moving 607 
average of reduction in annual N-losses (Kg N ha-1) as simulated by the DRAINMOD (DRN: 5-Yr Avg). 608 
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 617 

5 Summary and Conclusion 618 

This article discusses the development of a simple tool suitable for a water quality credit trading system that 619 

involves the use of DWM in Eastern North Carolina. In its basic form, the tool is presented by a set of regression 620 

equations tracking DWM caused reductions of drainage flows and N mass losses as a function of easy-to-define 621 

variables describing site-specific environmental conditions and management practices. DRAINMOD and 622 

DRAINMOD-NII were used to conduct long-term simulations of annual drainage flow and NO3-N losses.  Results 623 

of the simulations were used to build the regression equations.   624 

Simulations comprised numerous scenarios allowing variations in soil type, weather conditions, drainage design, 625 

and cultural management practices to represent the many scenarios possible in eastern North Carolina. To 626 

accomplish this intensive simulation exercise, efforts were exerted towards data collection and input file preparation, 627 

in addition to integrating the DRAINMOD-based models through a batch mode. Regression analysis was performed 628 

on the simulated data to develop equations designed to estimate annual drainage rates under four tiers of 629 

management scenarios: a continues corn cropping system operated under conventional drainage (FDCC), a 630 

continues corn cropping system operated under controlled drainage (DWMCC), a corn-wheat-soybean cropping 631 

system operated under conventional drainage (FDCWS), and a corn-wheat-soybean cropping system operated under 632 

controlled drainage. Similarly, a set of four regression equations developed and assigned to estimate annual NO3-N 633 

leaching losses. The estimations of annual drainage flow and NO3-N losses by the regression model correlated well 634 

with the corresponding DRAINMOD-based simulations (R2
adj ≥ 0.88). 635 

The regression tool was used to estimate annual DWM-induced reductions for 25 years of historical weather data for 636 

an experimental site located in Plymouth eastern North Carolina. In comparison to DRAINMOD and DRAINMOD-637 

NII, previously calibrated and validated for this site, the regression models performed well in estimating most of the 638 

year-to-year variation in drainage rates and nitrate losses.  Exceptions occurred for years with extreme weather 639 

conditions or high variations in inter-annual climate conditions; however, the comparison based on a 5-year moving 640 

averages illustrated that both methods yielded similar outcomes.  641 

In conclusion, this regression approach provides producers, local and federal agencies with an easy-to-use 642 

alternative to the burdensome use of process based models to facilitate the assessment of DWM under different site 643 

conditions exist in eastern North Carolina.  Potential errors with the method can occur when inter-annual variations 644 



 

 

in rainfall are high which can lead to inaccurate estimations of annual N losses for individual years. To compensate 645 

for these errors, the trade of N credits could be based on multiple-year contract.  Estimates of N losses average out 646 

over five year periods. Although the primary intent of building these regression models was to facilitate the 647 

quantifications of N credits, the results presented herein introduce that the tool can be used with different water 648 

management applications.  Next steps for facilitating wider use of these methods include development of regression 649 

equations for other areas where drained agriculture is used such as the Midwest US.  Development of a user-friendly 650 

interface, web-based tools, and educational program to teach the method will also make the method more acceptable 651 

for use in a nutrient credit trading system. 652 
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